<u>AP Physics C: Mechanics and Electricity and Magnetism</u> Course Organization

Singapore American School 2019-2020

Section 1: Course Organization

The theoretical foundation for this course is the *Modeling Theory of Cognition*, which posits that humans construct mental (conceptual) models to make sense of the world. These conceptual models are constructed of systems, structures, and representations, which allow us to understand and connect information, processes, and skills. To help students develop a <u>coherent system of conceptual models in physics</u>, this course uses a guided-inquiry learning cycle—known as the modeling cycle—that has students do the following: 1) Perform a laboratory activity to develop a relationship between two variables, creating an initial conceptual model for a topic; 2) Discuss and practice parts of the conceptual model, developing an understanding of the conceptual model; and 3) Apply the model through more laboratory activities or projects. By the end of each modeling cycle, students have developed a coherent conceptual model for a topic; the conceptual model contains multiple representations, limits of the model, and applications of the model.

(See Sections 5 and 6 for a full list of conceptual models. See Section 7 for a conceptual model organizer.)

Although the goal is to perform a full modeling cycle for each topic, every course has constraints. For this course, the constraint is time; students have an 80-minute class on an alternating-day schedule, giving a mean of 200 minutes per week. This lower amount of time has forced difficult choices about parts of the modeling cycle, so sections of the course have different foci on parts of the modeling cycle. For the Algebra-Based Electricity and Magnetism section, the focus is on the first and second parts of the modeling cycle—students will develop relationships between variables and create complete conceptual models through discussion and practice. For the Calculus-Based Mechanics section, the focus is on the second and third parts of the modeling cycle—students will create complete conceptual models through discussion and practice and apply the models through laboratory activities. For the Calculus-Based Electricity and Magnetism section, the focus returns to parts one and two of the modeling cycle. If your course has more time available, consider adding the missing parts of the models to each section.

Although this course has a lower amount of time, students entering this course are well-prepared. All students have completed at least one previous physics course, with a high percentage coming from an <u>AT Computational Physics</u> course. Students must also have a co-requisite of any calculus course, though most students have completed at least one calculus course. Students at the Singapore American School are highly motivated, working diligently to perform well in their courses.

Because students have completed a physics course—with an emphasis on Mechanics—this course integrates Electricity and Magnetism with Mechanics. Thanks to the idea from <u>Greg Jacobs</u>, this course begins with Algebra-Based Electricity and Magnetism, moves to Calculus-Based Mechanics, then returns to Calculus-Based Electricity and Magnetism. This sequence allows students to experience new material at the beginning of the course and creates space for the calculus teachers to progress through their storyline. In addition, students are less familiar with topics in Electricity and Magnetism; working through the topics twice in a single year helps deepen their understanding of the conceptual models.

1 | P a g eNathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019
Adapted from AMTA Modeling Instruction and College Board resources.Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The assessment system in this course is a Standards-Based Grading approach, so students will receive a semester grade from a combination of standards. Section 3 lists the topics with the percentage, learning objectives from the 2019 Course and Exam Description books, and class during which each assessment will occur. Each topic is assessed at least twice, so students will have multiple opportunities to provide evidence of their learning.

General Timeline

Classes	Content	Topics
1 – 26	Algebra-Based Electricity and Magnetism	 Electric Field Electric Force Electric Potential and Electric Potential Energy Capacitance Resistance Circuits – Resistor-Only Magnetic Field Magnetic Force
27 - 53	Calculus-Based Mechanics	 Linear and Angular Kinematics Linear and Angular Momentum Force and Torque Energy, Work, and Power Oscillations and Gravitation
54 - 68	Calculus-Based Electricity and Magnetism	 Circuits – RC, RL, and RLC Electric Potential Electric Flux and Gauss' Law Magnetic Flux and Ampère's Law Faraday's and Lenz's Laws Maxwell's Equations
69 – 71	Review and AP Exam	 Review of Mechanics and Electricity and Magnetism AP Exams on Monday, 4 May Mechanics: 12:00 pm Electricity and Magnetism: 2 pm
72 - 78	Project	- Topic in Mechanics or Electricity and Magnetism

Table of Contents:

- Section 1: Course Organization Page 1
- Section 2: Schedule Page 3 _
- Section 3: Scoring System Page 15 -
- Section 4: Comparison of Models with Book Chapters and AP Problems Page 18
- Section 5: Models for Electricity and Magnetism Page 21
- Section 6: Models for Mechanics Page 29
- Section 7: Model for a Concept in AP Physics C Page 43

Section 2: Schedule

- Students are in each class for 80 minutes on an alternating-day schedule.
- **Task** Types and Science Practices
 - Activity: Laboratory work, either hands-on or computer-based
 - *Discovery*: These activities have students collect data, graph, and perform analysis to determine a relationship between two variables. *Science Practices*: 2.A, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.B, 3.C, 3.D, 4.A, 4.B, 4.C, 4.D, 4.E.
 - *Verification*: These activities have students verify a previously-studied relationship between two variables. *Science Practices*: 2.A, 2.B, 2.C, 2.D, 2.E, 2.F, 3.A, 3.B, 3.C, 3.D, 4.A, 4.B, 4.C, 4.D, 4.E.
 - *Claim-Evidence-Reasoning (CER)*: These activities have students make a claim about situation, gather evidence about the claim, and provide reasoning about the veracity of the claim. *Science Practices*: 3.A, 3.B, 3.C, 3.D, 4.A, 4.B, 4.C, 4.D, 4.E, 7.A, 7.B, 7.C, 7.D, 7.E, 7.F.
 - **Discussion**: Lecture and question session on a topic.
 - **Practice**: Conceptual problems: <u>TIPERs</u>, card sorts, and other methods; Mathematics-based problems—paper- or computer-based sources (WebAssign or AP Classroom). *Science Practices*: 1.D, 3.C, 3.D, 4.D, 5.D, 5.E, 6.A, 6.B, 6.C, 6.D.
 - **Model**: Development of a conceptual model for a topic. *Science Practices*: 1.A, 1.B, 1.C, 1.E, 3.C, 3.D, 4.A, 4.B, 4.E, 5.A.
 - **Assessment**: A written or computer-based (AP Classroom) check for understanding through conceptual questions and mathematics-based problems. *Science Practices*: 1.D, 3.C, 3.D, 4.D, 5.D, 5.E, 6.A, 6.B, 6.C, 6.D.
 - **Review**: Discussion and practice for a set of topics. *Science Practices*: 1.D, 3.C, 3.D, 4.D, 5.D, 5.E, 6.A, 6.B, 6.C, 6.D.
- *Model* is the conceptual models for a topic—see the next section of this document for the models in Electricity and Magnetism and Mechanics.
- *Learning Objectives* are from the 2019 Course and Exam Description for <u>Mechanics</u> and <u>Electricity and Magnetism</u>. Each *Learning Objective* is listed for an activity, discussion, or model.
- **Science Practices** are from the 2019 Course and Exam Description for <u>Mechanics</u> and <u>Electricity and Magnetism</u>. See above for groupings of *Science Practices* for each *Task*.

Class	Task	Model	Learning Objectives	Science Practices
1	 Introductions and Speed Meeting Electricity and Magnetism Pre- Assessment: EMCA 			
2	 Electricity and Magnetism Pre- Assessment: BEMA Discussion: Charge; Electric fields Activity (Discovery): Determine the electric field created by various charge distributions. [Use <u>Charges</u> <u>and Fields</u> from PhET.] Practice: Electric fields 	Electric Field and Force	FIE-1.B FIE-1.C FIE-1.D FIE-1.E	Activity: Discovery Practice

Class	Task	Model	Learning Objectives	Science Practices
3	 Activities (Discovery): Determine the relationship between charge and electric force. [Use <i>Forces and Electric Charge II</i> from Pivot Interactives.] Determine the relationship between distance and electric force. [Use <i>Coulomb's Law Observational</i> <i>Experiment</i> from Pivot Interactives.] Discussion: Electric force; Relationship between electric force and field Practice: Electric force; Electric field 	Electric Field and Force	ACT-1.A ACT-1.B ACT-1.C ACT-1.D FIE-1.A FIE-1.F FIE-1.G	Activity: Discovery Practice
4	 Model: Electric field and force Activity (Discovery): Determine the relationship between distance and electric potential. [Use <u>Charges and Fields</u> from PhET.] Discussion: Electric potential 	Electric Field and Force Electric Potential and Electric Potential Energy	CNV-1.A	Model Activity: Discovery
5	 Assessment: Electric field and force Discussion: Electric potential and electric potential energy Practice: Electric potential and electric potential energy 	Electric Field and Force Electric Potential and Electric Potential Energy	CNV-1.B CNV-1.C CNV-1.D CNV-1.E CNV-1.F	Assessment Practice
6	 Model: Electric potential and electric potential energy Discussion: Relationships between electric field, electric force, electric potential, and electric potential energy; Conductors Practice: Electric potential and electric potential energy 	Electric Field and Force Electric Potential and Electric Potential Energy	ACT-2.A ACT-2.B ACT-2.C ACT-2.D ACT-2.E ACT-3.A ACT-3.B	Model Practice
7	 Assessment: Electric potential and electric potential energy Activity (Discovery): Determine the electric field and electric potential in a parallel-plate capacitor. [Use <i>E</i>- <i>Field</i> from Pivot Interactives.] 	Electric Potential and Electric Potential Energy Capacitance	CNV-4.A	Assessment Activity: Discovery

Class	Task	Model	Learning Objectives	Science Practices
8	 Discussion: Capacitance Activity (CER): Define and analyze a claim related to the impact of a dielectric on the capacitance of a parallel-plate capacitor. [Use <u>Capacitor Lab</u> from PhET.] Discussion: Dielectrics Practice: Capacitance and dielectrics 	Capacitance	CNV-4.B CNV-4.C CNV-4.F CNV-4.G CNV-4.H CNV-4.I FIE-2.A FIE-2.B FIE-2.C FIE-2.D	Activity: CER Practice
9	 Discussion: Combining capacitors Practice: Combining capacitors Model: Capacitance 	Capacitance	CNV-7.A	Practice Model
10	Practice: CapacitanceAssessment: Capacitance	Capacitance		Practice Assessment
11	- Practice: Electric field and force, electric potential and electric potential energy, and capacitance	Electric Field and Force Electric Potential and Electric Potential Energy Capacitance		Practice
12	- Assessment: Electric field and force, electric potential and electric potential energy, and capacitance	Electric Field and Force Electric Potential and Electric Potential Energy Capacitance		Assessment
13	 Activity (Discovery): Make a bulb light with one wire, one battery, and one bulb. Discussion: Resistor-only circuits Activity (Discovery): Determine the relationship between electric potential and current. 	Resistance Circuits	FIE-3.A FIE-3.B	Activity: Discovery

Class	Task	Model	Learning Objectives	Science Practices
14	 Discussion: Resistor-only circuits and resistance Activity/Practice (Verification): Calculate and verify electric potential, current, and resistance of resistor-only circuits. [Use <u>Circuit</u> <u>Construction Kit</u> from PhET.] 	Resistance Circuits	FIE-3.C FIE-3.D FIE-3.E FIE-3.F CNV-5.A CNV-5.B CNV-6.A CNV-6.B CNV-6.C CNV-6.D CNV-6.E	Activity: Verification Practice
15	- Activity (CER): Determine the optimum load resistance to generate maximum power from photovoltaic cells. [Use <i>Optimizing Power</i> <i>Generation from Photovoltaic Cells</i> from Pivot Interactives.]	Circuits		Activity: CER
16	 Model: Resistor-only circuits and resistance Activity/Practice (Verification): Calculate and verify electric potential, current, and resistance of resistor-only circuits. [Use <u>Circuit</u> <u>Construction Kit</u> from PhET.] 	Resistance Circuits	CNV-6.F CNV-6.G	Model Activity: Verification
17	 Practice: Resistor-only circuits and resistance Assessment: Resistor-only circuits and resistance 	Resistance Circuits		Practice Assessment
18	 Activity (Discovery): Determine the magnetic field generated by a current-carrying wire. Discussion: Magnetic field 	Magnetic Field	FIE-5.A FIE-5.B	Activity: Discovery
19	 Practice: Magnetic field Activity (Discovery): Determine properties that increase or decrease the strength of the magnetic field in a solenoid. 	Magnetic Field		Practice Activity: Discovery
20	 Model: Magnetic field Activity (Discovery): Determine force on a current-carrying wire. 	Magnetic Field Magnetic Force	FIE-4.A	Model Activity: Discovery

6 | P a g eNathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019
Adapted from AMTA Modeling Instruction and College Board resources.Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Class	Task	Model	Learning Objectives	Science Practices
21	- Discussion: Magnetic force - Practice: Magnetic force	Magnetic Force	FIE-4.B FIE-4.C FIE-5.C CHG-1.A CHG-1.B CHG-1.C CHG-1.D CHG-1.E	Practice
22	 Model: Magnetic force Activity (Verification): Research and report on an application of magnetic field and force. 	Magnetic Force		Model Activity: Verification
23	Practice: Magnetic field and forceAssessment: Magnetic field and force	Magnetic Field Magnetic Force		Practice Assessment
24	- Review: Algebra-based electricity and magnetism	All in E/M		Review
25	- Assessment: Algebra-based electricity and magnetism	All in E/M		Assessment
26	 Mechanics Pre-Assessment: FCI Activity (Verification): Create a method for landing a marble in a moving buggy. Discussion: Linear kinematics and projectile motion Practice: Linear kinematics and projectile motion 	Constant Linear Velocity Uniform Linear Acceleration 2-D Motion	CHA-1.A CHA-1.B CHA-1.C CHA-2.A CHA-2.B CHA-2.C CHA-2.D	Activity: Verification Practice
27	 Mechanics Pre-Assessment: MBT Activity (Discovery): Using a flying pig, determine the relationship between angle and time. Discussion: Angular kinematics Practice: Angular kinematics 	Constant Angular Velocity Uniform Angular Acceleration	INT-2.A CHA-4.A CHA-4.B	Activity: Discovery Practice

Class	Task	Model	Learning Objectives	Science Practices
28	 Model: Linear and angular kinematics Practice: Linear and angular kinematics Assessment: Linear and angular kinematics 	Constant Linear Velocity Uniform Linear Acceleration 2-D Motion Constant Angular Velocity Uniform Angular Acceleration		Model Practice Assessment
29	 Activity (Verification): For two types of collisions, determine if linear momentum is conserved. Discussion: Linear momentum Practice: Linear momentum Model: Linear momentum 	Linear Momentum	INT-5.A INT-5.C CON-4.A CON-4.B CON-4.C CON-4.E CON-4.F	Activity: Verification Practice Model
30	 Activity (Discovery): Determine the balance point for various configurations of mass. Discussion: Center of mass, moment of inertia, and angular momentum Practice: Center of mass, moment of inertia, and angular momentum 	Angular Momentum	CHA-3.A CHA-3.B CHA-3.C CON-4.D CON-5.A CON-5.B INT-6.C INT-6.D INT-6.E	Activity: Discovery Practice
31	 Activity (Verification): During a collision, determine if angular momentum is conserved. Practice: Angular momentum 	Angular Momentum	CON-5.C CON-5.D	Activity: Verification Practice
32	 Model: Angular Momentum Assessment: Linear and angular momentum 	Linear Momentum Angular Momentum		Model Assessment

Class	Task	Model	Learning Objectives	Science Practices
33	 Discussion: Balanced and unbalanced force Practice: Balanced and unbalanced force 	Balanced Force Unbalanced Force	INT-1.A INT-1.B INT-1.C INT-1.D INT-1.E INT-1.F INT-1.G INT-3.A INT-3.B INT-5.B INT-5.D INT-5.E	Practice
34	 Activity (Verification): Using a flying pig, determine the angle the string makes with the ceiling by two different methods; goal is less than 2% difference. Discussion: Centripetal force Practice: Centripetal force 	Unbalanced Force	INT-2.A INT-2.B INT-2.C INT-2.D INT-2.E	Activity: Verification Practice
35	- Practice: Balanced and unbalanced force	Balanced Force Unbalanced Force	INT-1.H INT-1.I INT-1.J	Practice
36	 Practice: Balanced and unbalanced force Assessment: Balanced and unbalanced force 	Balanced Force Unbalanced Force		Practice Assessment
37	- Review: Calculus-based mechanics in the first semester	All in Mechanics		Review
38	- Assessment: Calculus-based mechanics in the first semester	All in Mechanics		Assessment
39	- Review: Semester exam	All in semester		Review
	- Semester Exam	All in semester		Assessment

Class	Task	Model	Learning Objectives	Science Practices
40	 Activity (Discovery): Determine the relationship between torque and moment of inertia. Discussion: Balanced and unbalanced torque Practice: Balanced and unbalanced torque 	Balanced Torque Unbalanced Torque	INT-6.A INT-6.B INT-7.A INT-7.B INT-7.C	Activity: Discovery Practice
41	 Model: Balanced and unbalanced torque Practice: Balanced and unbalanced torque 	Balanced Torque Unbalanced Torque		Model Practice
42	 Practice: Balanced and unbalanced torque Assessment: Balanced and unbalanced torque 	Balanced Torque Unbalanced Torque		Practice Assessment
43	 Activity (Verification): Determine the maximum height of an object rolling up an incline. Discussion: Energy Practice: Energy 	Energy, Work, Power	CON-1.D CON-1.E CON-2.A CON-2.C INT-7.E	Activity: Verification Practice
44	- Model: Energy, work, and power - Discussion: Energy, work, and power - Practice: Energy, work, and power	Energy, Work, Power	CON-1.A CON-1.B CON-1.C CON-1.F CON-2.B CON-2.D CON-2.D CON-3.A CON-4.B INT-4.A INT-4.A INT-4.C INT-7.D	Model Practice
45	- Practice: Energy, work, and power	Energy, Work, Power		Practice
46	- Assessment: Energy, work, and power	Energy, Work, Power		Assessment

10 | P a g eNathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019
Adapted from AMTA Modeling Instruction and College Board resources.Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Class	Task	Model	Learning Objectives	Science Practices
47	- Activity (Discovery): Determine the factors that influence the period of a pendulum.	Oscillations	INT-8.K	Activity: Discovery
48	 Activity (Discovery): Determine the factors that influence the period of a mass hanging by a spring. Discussion: Oscillations Practice: Oscillations 	Oscillations	INT-8.A INT-8.B INT-8.C INT-8.C INT-8.E INT-8.F INT-8.G INT-8.H INT-8.I INT-8.J INT-8.K	Activity: Discovery Practice
49	- Model: Oscillations - Discussion: Gravitation - Practice: Gravitation	Oscillations Gravitation	FLD-1.A FLD-1.B FLD-1.C CON-6.A CON-6.B CON-6.C CON-6.C CON-6.E CON-6.F CON-6.F CON-6.H CON-6.I	Model Practice
50	 Activity (Verification): Given constraints, calculate and verify the intersection point of a pendulum and block on a buggy. Practice: Oscillations and gravitation 	Oscillations Gravitation		Activity: Verification Practice
51	 Practice: Oscillations and gravitation Assessment: Oscillations and gravitation 	Oscillations Gravitation		Practice Assessment
52	- Review: Calculus-based mechanics in the second semester	All in Mechanics		Review
53	- Assessment: Calculus-based mechanics in the second semester	All in Mechanics		Assessment

Class	Task	Model	Learning Objectives	Science Practices
54	 Activity (Discovery): Determine the time constant for combinations of resistors and capacitors. Discussion: RC circuits Practice: RC circuits 	Circuits	CNV-7.B CNV-7.C CNV-7.D CNV-7.F CNV-7.G	Activity: Discovery Practice
55	 Discussion: RL circuits and RLC circuits Practice: RL circuits and RLC circuits Discussion: Electric flux 	Circuits Electromagnetism	CNV-2.A CNV-10.A CNV-10.B CNV-10.C CNV-10.D CNV-10.E	Practice
56	- Discussion: Gauss' Law - Practice: Gauss' Law	Electromagnetism	CNV-2.B CNV-2.C CNV-2.D CNV-2.E CNV-2.F CNV-4.E	Practice
57	 Discussion: Electric potential; Fields and potentials of charge distributions Practice: Electric potential; Fields and potentials of charge distributions 	Electromagnetism	CNV-1.G CNV-3.A CNV-3.B CNV-3.C	Practice
58	 Practice: Circuits, Gauss' Law and electric potential Assessment: Circuits, Gauss' Law and electric potential 	Circuits Electromagnetism		Practice Assessment
59	- Activity (Discovery): Determine the magnetic flux density inside a levitated disk magnet. [Use <i>Magnet</i> <i>Accelerated by Electric Current</i> from Pivot Interactives.]	Magnetic Force		Activity: Discovery
60	 Discussion: Magnetic flux and Ampère's Law Practice: Magnetic flux and Ampère's Law 	Electromagnetism	CNV-8.A CNV-8.B CNV-8.C CNV-8.D CNV-8.E CNV-9.A	Practice

Class	Task	Model	Learning Objectives	Science Practices
61	 Activity (Discovery): Determine the magnetic field in a gap using a coil moving through the gap. [Use <i>Electromagnetic Induction</i> from Pivot Interactives.] Discussion: Faraday's and Lenz's Laws Practice: Faraday's and Lenz's Laws 	Electromagnetism	FIE-6.A	Activity: Discovery Practice
62	 Discussion: Faraday's and Lenz's Laws Practice: Faraday's and Lenz's Laws 	Electromagnetism	ACT-4.A ACT-4.B	Practice
63	- Activity (CER): Develop and analyze a claim related to magnets falling through a solenoid.	Electromagnetism		Activity: CER
64	 Practice: Faraday's and Lenz's Laws Discussion: Maxwell's equations 	Electromagnetism	FIE-7.A	Practice
65	 Practice: Ampère's, Faraday's, and Lenz's Laws Assessment: Ampère's, Faraday's, and Lenz's Laws 	Electromagnetism		Practice Assessment
66	- Review: Calculus-based electricity and magnetism	All in E/M		Review
67	- Review: Calculus-based electricity and magnetism	All in E/M		Review
68	- Assessment: Calculus-based electricity and magnetism	All in E/M		Assessment
69	- Review: AP Exams	All		Review
70	- Review: AP Exams	All		Review
71	- AP Exams: Mechanics and Electricity and Magnetism	All	All	
72	- Project on a topic in Mechanics or Electricity and Magnetism			
73	 Mechanics Post-Assessments: FCI and MBT Project on a topic in Mechanics or Electricity and Magnetism 			

13 | P a g eNathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019
Adapted from AMTA Modeling Instruction and College Board resources.
Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Class	Task	Model	Learning Objectives	Science Practices
74	 Electricity and Magnetism Post- Assessments: BEMA and EMCA Project on a topic in Mechanics or Electricity and Magnetism 			
75	- Project on a topic in Mechanics or Electricity and Magnetism			
76	- Project on a topic in Mechanics or Electricity and Magnetism			
77	- Project on a topic in Mechanics or Electricity and Magnetism			
78	- Project on a topic in Mechanics or Electricity and Magnetism			

Section 3: Scoring System

Semester 1					
Topia	Semester	Leoning Objectives	Assessment – Class Number		
Topic	Grade (%)	Learning Objectives	1 st	2 nd	3 rd
Electric Field and Force	12	FIE-1.B, FIE-1.C, FIE-1.D, FIE-1.E, ACT-1.A, ACT-1.B, ACT-1.C, ACT-1.D, FIE-1.A, FIE-1.F, FIE-1.G	5	12	Exam
Electric Potential and Electric Potential Energy	12	CNV-1.A, CNV-1.B, CNV-1.C, CNV-1.D, CNV-1.E, CNV-1.F, ACT-2.A, ACT-2.B, ACT-2.C, ACT-2.D, ACT-2.E, ACT-3.A, ACT-3.B	7	12	Exam
Capacitance	8	CNV-4.A, CNV-4.B, CNV-4.C, CNV-4.F, CNV-4.G, CNV-4.H, CNV-4.I, FIE-2.A, FIE-2.B, FIE-2.C, FIE-2.D, CNV-7.A	10	12	Exam
Circuits and Resistance	12	FIE-3.A, FIE-3.B, FIE-3.C, FIE-3.D, FIE-3.E, FIE-3.F, CNV-5.A, CNV-5.B, CNV-6.A, CNV-6.B, CNV-6.C, CNV-6.D, CNV-6.E, CNV-6.F, CNV-6.G	17	25	Exam
Magnetic Field and Force	12	FIE-5.A, FIE-5.B, FIE-4.A, FIE-4.B, FIE-4.C, FIE-5.C, CHG-1.A, CHG-1.B, CHG-1.C, CHG-1.D, CHG-1.E	23	25	Exam
Linear and Angular Kinematics	10	CHA-1.A, CHA-1.B, CHA-1.C, CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, INT-2.A, CHA-4.A, CHA-4.B	28	38	Exam
Linear and Angular Momentum	12	INT-5.A, INT-5.C, CON-4.A, CON-4.B, CON-4.C, CON-4.E, CON-4.F, CHA-3.A, CHA-3.B, CHA-3.C, CON-4.D, CON-5.A, CON-5.B, INT-6.C, INT-6.D, INT-6.E, CON-5.C, CON-5.D	32	38	Exam

Forces	12	INT-1.A, INT-1.B, INT-1.C, INT-1.D, INT-1.E, INT-1.F, INT-1.G, INT-3.A, INT-3.B, INT-5.B, INT-5.D, INT-5.E, INT-2.A, INT-2.B, INT-2.C, INT-2.D, INT-2.E, INT-1.H, INT-1.I, INT-1.J	36	38	Exam
Laboratory Skills	10		20	29	34

Semester 2					
Topia	Semester	Learning Objectives	Assessment – Class Number		
Topic	Grade (%)		/es 1 st		3 rd
Torque	10	INT-6.A, INT-6.B, INT-7.A, INT-7.B, INT-7.C	42	53	
Energy, Work, Power	20	CON-1.D, CON-1.E, CON-2.A, CON-2.C, INT-7.E, CON-1.A, CON-1.B, CON-1.C, CON-1.F, CON-2.B, CON-2.D, CON-3.A, CON-4.B, INT-4.A, INT-4.B, INT-4.C, INT-7.D	46	53	
Oscillations and Gravitation	10	INT-8.K, INT-8.A, INT-8.B, INT-8.C, INT-8.D, INT-8.E, INT-8.F, INT-8.G, INT-8.H, INT-8.I, INT-8.J, INT-8.K, FLD-1.A, FLD-1.B, FLD-1.C, CON-6.A, CON-6.B, CON-6.C, CON-6.D, CON-6.E, CON-6.F, CON-6.G, CON-6.H, CON-6.I	51	53	
Circuits	10	CNV-7.B, CNV-7.C, CNV-7.D, CNV-7.F, CNV-7.G, CNV-10.A, CNV-10.B, CNV-10.C, CNV- 10.D, CNV-10.E	58	66	
Electrostatics	15	CNV-2.A, CNV-2.B, CNV-2.C, CNV-2.D, CNV-2.E, CNV-2.F, CNV-4.E, CNV-1.G, CNV-3.A, CNV-3.B, CNV-3.C	58	66	
Electromagnetism	15	CNV-8.A, CNV-8.B, CNV-8.C, CNV-8.D, CNV-8.E, CNV-9.A, FIE-6.A, ACT-4.A, ACT-4.B, FIE-7.A	64	66	
Laboratory Skills	10		43	50	63
Project	10		78		

Section 4: Comparison of Models with Book Chapters and AP Problems

Books

- "HRW" is Fundamentals of Physics (8th Edition) by Halliday, Resnick, and Walker _
- "OpenStax (Vol. 1)" is *University Physics, Volume 1* by OpenStax -
- "OpenStax (Vol. 2)" is *University Physics, Volume 2* by OpenStax _

AP Problems are released FRQs from the College Board. Although problems have parts from different models, the listed problem is the model with the most parts in the problem.

- Mechanics
- **Electricity and Magnetism** _

Models	Book Chapters	AP Problems
Electric Field and Force Electric Potential and Electric Potential Energy	HRW - Ch. 21: 21.1 – 21.6 - Ch. 22: 22.1 – 22.8 - Ch. 24: 24.1 – 24.7, 24.8, 24.9, 24.10 OpenStax (Vol. 2) - Ch. 5: 5.1 – 5.6 - Ch. 7: 7.1 – 7.6	- 2010: 1 - 2016: 1
Circuits Capacitance Resistance	HRW - Ch. 25: 25.1 – 25.7 - Ch. 26: 26.1 – 26.7 - Ch. 27: 27.1 – 27.9 OpenStax (Vol. 2) - Ch. 8: 8.1 – 8.5 - Ch. 9: 9.1 – 9.5 - Ch. 10: 10.1 – 10.6 - Ch. 14: 14.4	 2007: 1 2008: 2 2009: 2 2010: 2 2011: 2 2012: 2 2013: 2 2014: 1 2015: 2 2016: 2 2017: 2 2018: 2 2019 (1): 2 2019 (2): 1
Magnetic Field Magnetic Force	HRW - Ch. 28: 28.1 – 28.9 - Ch. 29: 29.1 – 29.3 OpenStax (Vol. 2) - Ch. 11: 11.1 – 11.7 - Ch. 12: 12.1 – 12.4	- 2007: 3 - 2008: 3 - 2019 (2): 3

18 | P a g e

Nathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019 Adapted from AMTA Modeling Instruction and College Board resources. Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Models	Book Chapters	AP Problems
Electromagnetism	HRW - Ch. 23: 23.1 – 23.8 - Ch. 29: 29.4, 29.5 - Ch. 30: 30.1 – 30.10 - Ch. 32: 32.1 – 32.5 OpenStax (Vol. 2) - Ch. 6: 6.1 – 6.4 - Ch. 12: 12.5 – 12.6 - Ch. 13: 13.1 – 13.7 - Ch. 14: 14.1 – 14.3 - Ch. 16: 16.1	 2007: 2 2008: 1 2009: 1, 3 2010: 3 2011: 1, 3 2012: 1, 3 2013: 1, 3 2014: 2, 3 2015: 1, 3 2015: 1, 3 2016: 3 2017: 1, 3 2018: 1, 3 2019 (1): 1, 3 2019 (2): 2
Constant Linear Velocity Constant Angular Velocity Uniform Linear Acceleration Uniform Angular Acceleration 2-D Motion	HRW - Ch. 1: 1.1 – 1.7 - Ch. 2: 2.1 – 2.9 - Ch. 4: 4.1 – 4.9 - Ch. 10: 10.1 – 10.5 OpenStax (Vol. 1) - Ch. 1: 1.1 – 1.7 - Ch. 3: 3.1 – 3.6 - Ch. 4: 4.1 – 4.5 - Ch. 10: 10.1 – 10.3	- 2007: 1 - 2013: 1 - 2015: 1 - 2018: 1
Linear Momentum Angular Momentum	HRW - Ch. 3: 3.1 – 3.8 - Ch. 9: 9.1, 9.2, 9.4, 9.7, 9.9, 9.10, 9.11 - Ch. 10: 10.7 - Ch. 11: 11.7, 11.9 – 11.11 OpenStax (Vol. 1) - Ch. 2: 2.1 – 2.4 - Ch. 9: 9.1, 9.3 – 9.6 - Ch. 10: 10.5 - Ch. 11: 11.2, 11.3 (no torque or energy)	- 2014: 3 - 2016: 3 - 2018: 2 - 2019 (1): 2

Models	Book Chapters	AP Problems
Balanced Force Unbalanced Force	HRW - Ch. 5: 5.1 – 5.9 - Ch. 6: 6.1 – 6.5 - Ch. 9: 9.3, 9.5, 9.6, 9.12 - Ch. 10: 10.8, 10.9 - Ch. 11: 11.1, 11.2, 11.4-11.6, 11.8 - Ch 12: 12.1 – 12.6 OpenStax (Vol. 1) - Ch. 5: 5.1 – 5.7 - Ch. 6: 6.1 – 6.4 - Ch. 9: 9.2, 9.7 - Ch. 10: 10.6, 10.7 - Ch. 11: 11.1 - Ch. 12: 12.1, 12.2	 2007: 1 2008: 1 2009: 3 2010: 1, 3 2011: 1, 2 2012: 3 2013: 2 2016: 1 2017: 1 2018: 3 2019 (1): 1 2019 (2): 1
Balanced Torque Unbalanced Torque	HRW - Ch. 10: 10.8, 10.9 - Ch. 11: 11.6, 11.8 OpenStax (Vol. 1) - Ch. 10: 10.6, 10.7 - Ch. 11: 11.1 - Ch. 12: 12.1, 12.2	- 2008: 2 - 2013: 3
Energy Work Power	HRW - Ch. 7: 7.1 – 7.9 - Ch. 8: 8.1 – 8.8 - Ch. 9: 9.8 - Ch. 10: 10.6, 10.10 - Ch. 11: 11.3 OpenStax (Vol. 1) - Ch. 7: 7.1 – 7.4 - Ch. 8: 8.1 – 8.5 - Ch. 10: 10.4, 10.8	 2007: 3 2008: 3 2009: 1 2010: 2 2012: 2 2013: 3 2014: 1, 2 2015: 3 2017: 2, 3 2018: 2 2019 (1): 3 2019 (2): 2, 3
Oscillations Gravitation	HRW - Ch. 13: 13.1 – 13.8 - Ch. 15: 15.1 – 15.7 OpenStax (Vol. 1) - Ch. 13: 13.1 – 13.5 - Ch. 15: 15.1 – 15.4	- 2007: 2 - 2008: 3 - 2009: 2 - 2011: 3 - 2012: 1 - 2015: 2

| P a g eNathan Belcher, Ed.D. (contactnathanbelcher@gmail.com) – v1 – August 2019
Adapted from AMTA Modeling Instruction and College Board resources.
Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Section 5: Models for Electricity and Magnetism

(I have listed at most two applications; however, models have many more than two applications.)

1. Model for Electric Field and Force

- a. Written Statements Explanations and Predictions
 - i. All matter is composed of charged particles, with varying charge mobility in different materials.
 - ii. Like charges repel but opposite charges attract.
 - iii. Neutral matter may be polarized, creating a localized electric field.
 - iv. Electric force is dependent on charges and distance.
 - v. The electric field vector points in the same direction as the electric force vector.
 - vi. The permittivity of free space (ε_0) is included as a constant in the electric force and electric field equations.
 - vii. This model is for stationary charges.
- b. Equations

i.
$$|\vec{F}_e| = \frac{1}{4\pi\epsilon_0} \left| \frac{q_1q_2}{r^2} \right|$$

ii. $\vec{E} = \frac{\vec{F}_e}{q}$

iii.
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\vec{r}|^2} \hat{r}$$

- c. Graphs
 - i. Electric field versus charge
 - ii. Electric field versus distance
- d. Diagrams
 - i. Free-body diagram
 - ii. Force diagram
 - iii. System interaction diagram
 - iv. Electric field diagram
- e. Applications
 - i. Spark plug
 - ii. Taser
- f. Limits
 - i. Moving charges

2. Model for Electric Potential and Electric Potential Energy

- a. Written Statements Explanations and Predictions
 - i. Electric potential is a property of location, not a material.
 - ii. Motion parallel to electric field lines does not have a change in energy; motion nonparallel to electric field lines does have a change in energy.
 - iii. Electric potential energy is difficult to measure, so instead we typically measure electric potential.
- b. Equations

i.
$$E_x = -\frac{dV}{dx}$$

ii. $\Delta V = -\int \vec{E} \cdot d\vec{r}$
iii. $V = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i}$
iv. $U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r}$

- c. Graphs
 - i. Electric field versus position
 - ii. Electric potential versus charge
 - iii. Electric potential versus distance
- d. Diagrams
 - i. Equipotentials for point charges
 - ii. Equipotentials for continuous charge distributions
- e. Applications
 - i. Circuits
- f. Limits
 - i. Moving charges

3. Model for Capacitance

- a. Written Statements Explanations and Predictions
 - i. Creating an uneven distribution of charge produces an electric field and electric potential difference between two locations.
 - ii. Capacitors store energy as an electric field.
 - iii. Capacitance adds when capacitors are connected in parallel; capacitance reduces when capacitors are connected in series.
 - iv. Capacitance is directly proportional to the dielectric constant and surface area; capacitance is inversely proportional to plate separation distance.
- b. Equations

i.
$$C = \frac{\kappa \varepsilon_{0A}}{d}$$

$$ii \quad \Lambda V = \frac{0}{2}$$

11.
$$\Delta V = \frac{c}{c}$$

iii.
$$C_p = \sum_i C_i$$

iv.
$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

v.
$$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

- c. Graphs
 - i. Capacitance versus plate area
 - ii. Capacitance versus plate separation distance
- d. Diagrams
 - i. Surface charge on a capacitor
 - ii. Electric schematic
- e. Applications
 - i. Capacitors
- f. Limits
 - i. Irregularly-shaped capacitors

4. Model for Resistance

- a. Written Statements Explanations and Predictions
 - i. Resistance is the net effect of atomic level 'obstacles' interfering with the motion of charge carriers.
 - ii. Resistance is directly proportional to resistivity of the material and length, and inversely proportional to cross-sectional area.
 - iii. Resistance adds when resistors are connected in series; resistance reduces when resistors are connected in parallel.
- b. Equations

i.
$$R = \frac{\rho l}{A}$$

ii.
$$\vec{E} = \rho \vec{I}$$

iii.
$$I = Nev_d A$$

iv.
$$R_s = \sum_i R_i$$

v.
$$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$$

- i. Resistance versus length
- ii. Resistance versus cross-sectional area
- d. Diagrams
 - i. Surface charge on a wire
 - ii. Electric schematic
- e. Applications
 - i. Underwater transmission cables
 - ii. Resistors
- f. Limits
 - i. Insulators
 - ii. Semiconductors

5. Model for Circuits

- a. Written Statements Explanations and Predictions
 - i. A conducting path allows constrained charge motion between the points as an uneven charge distribution is maintained.
 - ii. When there is more than one pathway for current to travel, the total current into the junction is equal to the total current leaving the junction.
 - iii. The voltage gains and drops around a closed loop of a circuit is equal to zero.
 - iv. The rate at which charge accumulates on a capacitor or current flows in a RC circuit depends on the resistance and capacitance.
 - v. After a capacitor has been fully charged, current stops for that branch.
 - vi. An uncharged capacitor initially acts as a short circuit.
 - vii. The equation relating current, voltage, and resistance is only valid for ohmic materials.
 - viii. An RC circuit is one containing one resistor and one capacitor.

i.
$$I = \frac{dQ}{dt}$$

ii. $I = \frac{\Delta V}{R}$
iii. $P = I\Delta V$
iv. $I = I_0 e^{-t/RC}$

v.
$$Q = CV \left(1 - e^{-t/_{RC}} \right)$$

vi. $Q = Q_0 e^{-t/_{RC}}$

vi.
$$Q = Q_0$$

- c. Graphs
 - i. Voltage versus current
 - ii. Current versus time
 - iii. Charge versus time
- d. Diagram
 - i. Electric schematic
- e. Applications
 - i. Power grids
 - ii. Analog electronics
- f. Limits
 - i. Non-ohmic materials
 - ii. Digital electronics

6. Model for Magnetic Field

- a. Written Statements Explanations and Predictions
 - i. Magnetic fields originate two locations: Permanent magnets and moving charges.
 - ii. Field strength diminishes with distance from moving charge and increases with increasing charge motion.
 - iii. Fields are loops and can be described with the right-hand rule.
 - iv. Energy can be stored as a magnetic field in a solenoid.
 - v. Inductance is a property of solenoids related to the geometry of the solenoid.
- b. Equations

i.
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

ii. $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$
iii. $B_S = \mu_0 nI$

iii.
$$B_S = \mu_0 n I$$

iv. $II = {}^1 I I^2$

iv.
$$U_L = \frac{1}{2}LI$$

- c. Graph
 - i. Magnetic field versus distance
- d. Diagrams
 - i. Magnetic fields of permanent magnets
 - ii. Magnetic fields of a short piece of current-carrying wire
 - iii. Magnetic fields of continuous current distributions
- e. Applications
 - i. Magnetic trapping
 - ii. Solenoids
- f. Limits
 - i. Non-classical particles

7. Model for Magnetic Force

- a. Written Statements Explanations and Predictions
 - i. Force is exerted on a charge moving in a magnetic field.
 - ii. Directions of force, charge/current, and magnetic field can be found with the right-hand rule.
 - iii. A current-carrying coil or magnetic dipole experiences torque in a magnetic field and twists to align with the applied magnetic field.
 - iv. The total force on a moving charged particle is the sum of the electric force and magnetic force.
- b. Equations
 - i. $\vec{F}_M = q\vec{v} \times \vec{B} = q|\vec{v}||\vec{B}|\sin\theta$

ii.
$$\vec{F}_M = \int I \, d\vec{l} \times \vec{B} = I |\vec{L}| |\vec{B}| \sin \theta$$

iii.
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

iv.
$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

- v. $|\vec{\mu}| = nIA$
- c. Graphs
 - i. Magnetic force versus velocity
 - ii. Magnetic force versus magnetic field
 - iii. Magnetic force versus angle
- d. Diagrams
 - i. Free-body diagram
 - ii. Force diagram
 - iii. System interaction diagram
- e. Applications
 - i. Cyclotron
 - ii. Mass spectrometer
- f. Limits
 - i. Non-classical particles

8. Model for Electromagnetism

- a. Written Statements Explanations and Predictions
 - i. Electric flux is the quantitative measure of the amount and direction of electric field over an entire surface.
 - ii. Gaussian surfaces can be used to determine values associated with electric fields and charge distributions.
 - iii. Magnetic flux is the quantitative measure of the amount and direction of magnetic field over an entire surface.
 - iv. Amperian loops can be used to determine values associated with magnetic fields and current distributions.
 - v. The closed-loop integral of the dot product between magnetic field and the area vector is equal to zero; this implies that a magnetic monopole cannot exist.
 - vi. Induced emf is related to the inductance and change in current or the change in magnetic flux.

b. Equation

- i. $\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ ii. $\varepsilon = \oint \vec{E} \cdot d\vec{l}$ iii. $\Phi_B = \int \vec{B} \cdot d\vec{A}$ iv. $\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$ v. $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$ vi. $\oint \vec{B} \cdot d\vec{A} = 0$ vii. $\varepsilon = -L \frac{dI}{dt}$ c. Graphs
 - i. Emf versus time
- d. Diagrams
 - i. Electric flux diagram, with Gaussian surface
 - ii. Magnetic flux diagram, with Amperian loop
- e. Applications
 - i. Electromagnetic waves (light!)
 - ii. Electric motor
 - iii. Electric generator
- f. Limits
 - i. Non-classical particles

Section 6: Models for Mechanics

(I have listed at most two applications; however, models have many more than two applications.)

1. Model for Constant Linear Velocity

- a. Written Statements Explanations and Predictions
 - i. Path length is defined as the total distance traveled along a path from starting position to ending position.
 - ii. Displacement is defined as a change in the position state variable.
 - iii. Speed is defined as path length per change in time.
 - iv. Velocity is defined as a change in position per change in time.
 - v. The slope of position versus time graph is velocity.
 - vi. The area between function and time axis on velocity versus time graph is displacement.
- b. Equations

i.
$$\Delta \vec{x} = x_f - x_i$$

ii.
$$\vec{v} = \frac{\Delta \vec{x}}{\Delta t}$$

- c. Graphs
 - i. Position versus time
 - ii. Velocity versus time
- d. Diagram
 - i. Motion map
- e. Applications
 - i. Determining the "best" path when traveling
 - ii. Calculating calories burned during a workout
 - iii. Calculating the intersection point of two objects
- f. Limits
 - i. Non-constant linear velocity
 - ii. Changing the direction of the velocity

2. Model for Constant Angular Velocity

- a. Written Statements Explanations and Predictions
 - i. Path length is defined as the total distance traveled along a path from starting position to ending position.
 - ii. Angular displacement is defined as a change in the angle state variable.
 - iii. Angular velocity is change in angle per change in time.
 - iv. The slope of angle versus time graph is angular velocity.
 - v. The area between function and time axis on angular velocity versus time graph is change in angular displacement.
 - vi. The relationship between path length and angle is determined by the distance from the particle to the axis of rotation.
 - vii. The relationship between tangential and angular velocities is determined by the distance from the particle to the axis of rotation.
- b. Equations
 - i. $\Delta \vec{\theta} = \theta_f \theta_i$
 - ii. $s = r\theta$
 - iii. $v = r\omega$

iv.
$$\vec{\omega} = \frac{\Delta \vec{\theta}}{\Delta t}$$

- c. Graph
 - i. Angle versus time
 - ii. Angular velocity versus time
- d. Diagram
 - i. Motion map
- e. Applications
 - i. Determining the "best" path around a curved surface
 - ii. Determining the launch point of a projectile when swinging
 - iii. Calculating the intersection point of two objects
- f. Limits
 - i. Non-constant angular velocity

3. Model for Uniform Linear Acceleration

- a. Written Statements Explanations and Predictions
 - i. Acceleration is defined as a change in velocity per change in time.
 - ii. Slope of a velocity versus time graph is acceleration.
 - iii. Area between function and time axis on acceleration versus time graph is change in velocity.
- b. Equations
 - i. $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$

ii.
$$v_x = v_{x0} + a_x t$$

iii.
$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$

iv.
$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$

- c. Graphs
 - i. Position versus time
 - ii. Position versus (time)²
 - iii. Velocity versus time
 - iv. Acceleration versus time
- d. Diagram
 - i. Motion map
- e. Applications
 - i. Calculating the stopping displacement when driving a car
 - ii. Determining the acceleration of a free-falling object
- f. Limits
 - i. Non-uniform linear acceleration

4. Model for Uniform Rotational Acceleration

- a. Written Statements Explanations and Predictions
 - i. Angular acceleration is defined as a change in angular velocity per change in time.
 - ii. The slope of an angular velocity versus time graph is angular acceleration.
 - iii. The area between function and time axis on angular acceleration versus time graph is change in angular velocity.
 - iv. The relationship between tangential and angular accelerations is determined by the distance from the particle to the axis of rotation.
- b. Equations
 - i. $a = r\alpha$

ii.
$$\vec{\alpha} = \frac{\Delta \vec{\omega}}{\Delta t}$$

iii.
$$\omega = \omega_0 + \alpha t$$

iv.
$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

v.
$$\omega_x^2 = \omega_{x0}^2 + 2\alpha_x(\theta - \theta_0)$$

- c. Graphs
 - i. Angle versus time
 - ii. Angle versus (time)²
 - iii. Angular velocity versus time
- d. Diagrams
 - i. Motion map
- e. Applications
 - i. Calculating the angular acceleration of a vinyl record
 - ii. Determining the angular acceleration of an object in a circle
- f. Limits
 - i. Non-uniform angular acceleration

5. Model for 2-D Motion

- a. Written Statements Explanations and Predictions
 - i. A projectile moves horizontally and vertically and traces a parabolic path in the absence of air resistance.
 - ii. Horizontal and vertical motion of projectile are independent; time is the link between the two directions.
- b. Equations

i.
$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$

ii. $y = y_0 + v_{y0}t + \frac{1}{2}a_gt^2$
iii. $v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$
iv. $v_y^2 = v_{y0}^2 + 2a_g(y - y_0)$

- c. Graphs
 - i. Position versus time
 - ii. Linear acceleration versus time
- d. Diagrams
 - i. Motion map
- e. Applications
 - i. Launching and landing projectiles
 - ii. Impact point of projectiles
- f. Limits
 - i. Non-zero forces in the horizontal direction
 - ii. More forces (besides F_g) in the vertical direction

6. Model for Linear Momentum

- a. Written Statements Explanations and Predictions
 - i. Linear momentum is defined as the mass multiplied by velocity.
 - ii. The center of mass of an object is determined by amount and placement of mass.
 - iii. Depending on the system, linear momentum can either be conserved or not conserved.
- b. Equations

i.
$$\vec{p} = m\vec{v}$$

ii.
$$\vec{p}_{1i} + \vec{p}_{2i} + \dots = \vec{p}_{1f} + \vec{p}_{2f} + \dots$$

iii.
$$x_{CM} = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

- c. Graphs
 - i. Linear velocity versus time
- d. Diagrams
 - i. Motion map

ii. $p_i - \Delta p - p_f$ chart

- e. Applications
 - i. Determining the center of mass of non-standard objects
 - ii. Calculating the initial or final velocity of an object for various cases
- f. Limits
 - i. Non-constant velocity
 - ii. Non-constant mass

7. Model for Angular Momentum

- a. Written Statements Explanations and Predictions
 - i. Angular momentum of a particle is determined by the cross product of the distance from the rotation point and linear momentum.
 - ii. Angular momentum of an object is determined by the moment of inertia of the object and its angular velocity.
 - iii. The moment of inertia of an object is found by summing the combination of each small part of mass and distance from the rotation point.
 - iv. The Parallel Axis Theorem provides a method for calculating the moment of inertia for an object with a rotation point other than the center of mass.
 - v. Depending on the system, angular momentum can either be conserved or not conserved.

b. Equations

i. $\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$

ii.
$$I = \int r^2 dm = \sum m r^2$$

iii.
$$I = I_{CM} + Md^2$$

iv.
$$\vec{L}_{1i} + \vec{L}_{2i} + \dots = \vec{L}_{1f} + \vec{L}_{2f} + \dots$$

- c. Graphs
 - i. Angular momentum and linear momentum
 - ii. Angular momentum and angular velocity
- d. Diagrams
 - i. Drawing of object
 - ii. $L_i \Delta L L_f$ chart
- e. Applications
 - i. Determine the angular momentum of a satellite in orbit
 - ii. Determine if angular momentum is conserved or non-conserved for a given system
- f. Limits
 - i. Non-constant linear momentum
 - ii. Non-constant radius
 - iii. Non-constant moment of inertia
 - iv. Non-constant angular velocity

8. Model for Balanced Force

- a. Written Statements Explanations and Predictions
 - i. Forces are interactions between two objects.
 - ii. Forces can be classified as either contact or non-contact.
 - iii. Objects acted upon by balanced forces will not accelerate; instead, they remain at rest or move with constant linear velocity.
 - iv. Forces are symmetric interactions (exist in pairs); paired forces are equal in magnitude but opposite in direction.
- b. Equation

i. $\sum \vec{F} = \vec{F}_{net} = 0$

- c. Diagrams
 - i. Force diagram
 - ii. Free-body diagram
 - iii. Interaction diagram
- d. Applications
 - i. Calculate the necessary force to keep an object in constant velocity
 - ii. Determine the placement of an object to keep a structure standing
- e. Limits
 - i. Unbalanced forces in any direction

9. Model for Unbalanced Force

- a. Written Statements Explanations and Predictions
 - i. From changes in momentum, we infer forces.
 - ii. From forces, we deduce changes in momentum.
 - iii. Impulse is defined as the change in momentum or the integral of the force multiplied by time.
 - iv. Acceleration is directly proportional to net force and inversely proportional to mass.
 - v. The numerical value for coefficient of friction is determined by the surfaces.
 - vi. Springs are an example of a restoring force; each spring has a spring constant.
 - vii. The period of an object in circular motion is defined as the time needed to make one complete rotation.
 - viii. As an object travels in a curved path, the direction of the velocity changes.
 - ix. Acceleration (centripetal) from the velocity change in direction points toward the center of the circle.
 - x. Force diagrams for an object undergoing circular motion show a net force directed toward the center of the circle.

i.
$$\vec{F} = \frac{d\vec{p}}{dt}$$

ii. $\vec{J} = \int \vec{F} dt = \Delta \vec{p}$
iii. $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$
iv. $|\vec{F}_f| \le \mu |\vec{F}_N|$

v.
$$\vec{F}_S = -k\Delta \vec{x}$$

vi. $a_c = \frac{v^2}{r} = \omega^2 r$

vii.
$$F_c = \frac{mv}{r}$$

viii.
$$T = \frac{2\pi}{\omega} =$$

- c. Graphs
 - i. Impulse versus time
 - ii. Force versus acceleration
 - iii. Force of friction versus normal force
 - iv. Spring force versus spring displacement
- d. Diagrams
 - i. Force diagram
 - ii. Free-body diagram
 - iii. Motion map
 - iv. Interaction diagram
- e. Applications
 - i. Determine the forces experienced during a collision
 - ii. Create a method for minimizing the forces experienced during a collision
- f. Limits
 - i. Objects moving at speeds near the speed of light
 - ii. Extremely small or large objects

10. Model for Balanced Torque

- a. Written Statements Explanations and Predictions
 - i. Torques is calculated by the cross product between the distance from a rotation point and the applied force.
 - ii. When the net torque at a rotation point equals zero, the object will remain at rest or move with constant angular velocity.
- b. Equations
 - i. $\vec{\tau} = \vec{r} \times \vec{F}$

ii.
$$\sum \vec{\tau} = \vec{\tau}_{net} = 0$$

- c. Graphs
 - i. Torque versus force
- d. Diagrams
 - i. Force diagram
- e. Applications
 - i. Determine the amount of force it takes to rotate an object for different rotation points ii. Calculate the amount of torque needed to ensure the object does not rotate
- f. Limits
 - i. Non-zero net torque

11. Model for Unbalanced Torque

- a. Written Statements Explanations and Predictions
 - i. When a non-zero net torque is exerted on a rotation point, the object will undergo an angular acceleration.
 - ii. The net torque is equal to the product of the moment of inertia and angular acceleration.
- b. Equations

i.
$$\vec{\alpha} = \frac{\Sigma \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$

- c. Graphs
 - i. Net torque versus angular acceleration
- d. Diagrams
 - i. Force diagram
- e. Applications
 - i. Determine the torque necessary to start or stop a spinning object
 - ii. Calculate the torque needed to drive a screw into an object
- f. Limits
 - i. Non-uniform angular acceleration

12. Model for Energy, Work, and Power

- a. Written Statements Explanations and Predictions
 - i. Energy is not disembodied; it is either stored in an object or by a field.
 - ii. Kinetic energy-either translational, rotational, or both-is the energy stored by a moving object.
 - iii. Elastic energy is stored in a deformable body.
 - iv. The magnitude of potential energy depends on the strength of the field and arrangement of objects in the field.
 - v. Thermal energy includes the kinetic energy associated with the random motion of particles and the potential energy associated with stretching, compressing, and bending the bonds among objects in a system.
 - vi. Energy can be transferred between a system and the surroundings by working, heating, or radiating.
 - vii. Power is the rate of energy transfer.
 - viii. Working relates the net or individual force with the displacement through an integration of the path length.

b. Equations

i. $K = \frac{1}{2}mv^2$

ii.
$$\Delta U_g = mg\Delta h$$

iii.
$$U_S = \frac{1}{2}k(\Delta x)^2$$

iv.
$$K = \frac{1}{2}I\omega^2$$

v.
$$\Delta E = W = \int \vec{F} \cdot d\vec{r}$$

vi
$$P = \frac{dE}{dE}$$

$$\begin{array}{ccc} v_1 & I & - \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{array}$$

- vii. $P = \vec{F} \cdot \vec{v}$
- c. Graphs
 - i. Velocity versus time
 - ii. Energy versus position
 - iii. Force versus position
- d. Diagrams
 - i. Force diagram
 - ii. Free-body diagram
 - iii. Energy bar chart (LOL diagram)
- e. Applications
 - i. Rube Goldberg machine
 - ii. Motion of objects
- f. Limits
 - i. Energy of light

13. Model for Oscillations

- a. Written Statements Explanations and Predictions
 - i. A plot of position versus time for ideal mass-spring or pendulum system follows repeating function (either sine or cosine).
 - ii. The period for a mass-spring system depends on mass and spring constant.
 - iii. The period for a pendulum depends on length and acceleration due to gravity.
- b. Equations

i.
$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

ii. $x = A\cos(\omega t + \varphi)$
iii. $v = -\omega A\sin(\omega t + \varphi)$
iv. $a = -\omega^2 A\cos(\omega t + \varphi)$
v. $T_S = 2\pi \sqrt{\frac{m}{k}}$
vi. $T_p = 2\pi \sqrt{\frac{l}{g}}$

- c. Graphs
 - i. Position versus time
 - ii. Velocity versus time
 - iii. Acceleration versus time
- d. Diagrams
 - i. Motion map
 - ii. Force diagram
 - iii. Free-body diagram
 - iv. Energy bar chart (LOL diagram)
- e. Applications
 - i. Counter-balancing pendulum at the top of a skyscraper
 - ii. Windings in a clock
- f. Limits
 - i. Pendula released from greater than approximately 10 degrees
 - ii. Friction of components

14. Model for Gravitation

- a. Written Statements Explanations and Predictions
 - i. The motion of an object in orbit does not depend on the object's mass.
 - ii. The relationship the cube of the radius and square of the period is true for circular and elliptical orbits.
- b. Equations

i.
$$\left(\frac{4\pi^2}{GM}\right)r^3 = T^2$$

ii.
$$|\vec{F}_G| = \frac{Gm_1m_2}{r^2}$$

iii.
$$U_G = -\frac{Gm_1m_2}{r}$$

- c. Graphs
 - i. Period versus radius
 - ii. Energy versus radius
- d. Diagrams
 - i. Force diagram
 - ii. Free-body diagram
 - iii. Energy bar chart (LOL diagram)
- e. Applications
 - i. Rocket launches
 - ii. Satellite orbits
- f. Limits
 - i. Systems where objects orbit each other

Written Statements – Explanations and	Fauations
Predictions	Equations
Treatenons	
Graphs	Diagrams
Applications	Limits